On the quadratic moment of self-normalized sums

نویسنده

  • Fredrik Jonsson
چکیده

Let an integer n ≥ 2 and a vector of independent, identically distributed random variables X = (X1, . . . , Xn) be given with P(X = 0) = 0 and define the self-normalized sum Zn = ( Pn i=1 Xi)/( Pn i=1 X 2 i ) . We derive a formula for EZ n which enables us to prove that EZ 2 n ≥ 1 and that EZ n = 1 if and only if the summands are symmetrically distributed. The formula moreover suggests nonparametric estimators of EZ n given X which we comment upon. We also construct examples where Zn converges to the standard normal distribution as n tends to infinity while EZ n tends to infinity (the distribution of the summands varies with n).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-normalized Moderate Deviations and Lils

Let fXn;n 1g be i.i.d. R d-valued random variables. We prove Partial Moderate Deviation Principles for self-normalized partial sums subject to minimal moment assumptions. Applications to the self-normalized law of the iterated logarithm are also discussed.

متن کامل

Self-normalized Cramér type Moderate Deviations for the Maximum of Sums

Let X1, X2, . . . be independent random variables with zero means and finite variances, and let Sn = ∑n i=1Xi and V 2 n = ∑n i=1X 2 i . A Cramér type moderate deviation for the maximum of the self-normalized sums max1≤k≤n Sk/Vn is obtained. In particular, for identically distributed X1, X2, · · · , it is proved that P(max1≤k≤n Sk ≥ xVn)/(1 − Φ(x)) → 2 uniformly for 0 < x ≤ o(n1/6) under the opt...

متن کامل

A General Law of Complete Moment Convergence for Self-Normalized Sums

Qing-pei Zang School of Mathematical Science, Huaiyin Normal University, Huaian 223300, China Correspondence should be addressed to Qing-pei Zang, [email protected] Received 9 March 2010; Revised 10 April 2010; Accepted 11 April 2010 Academic Editor: Andrei Volodin Copyright q 2010 Qing-pei Zang. This is an open access article distributed under the Creative Commons Attribution License, whic...

متن کامل

A Supplement to Precise Asymptotics in the Law of the Iterated Logarithm for Self-normalized Sums

Let X, X1, X2, . . . be i.i.d. random variables with zero means, variance one, and set Sn = ∑n i=1 Xi, n ≥ 1. Gut and Spǎtaru [3] established the precise asymptotics in the law of the iterated logarithm and Li, Nguyen and Rosalsky [7] generalized their result under minimal conditions. If P(|Sn| ≥ ε √ 2n log log n) is replaced by E{|Sn|/√n− ε √ 2 log log n}+ in their results, the new one is call...

متن کامل

Self - Normalized Processes : Exponential Inequalities , Moment Bounds and Iterated Logarithm Laws

Self-normalized processes arise naturally in statistical applications. Being unit free, they are not affected by scale changes. Moreover, self-normalization often eliminates or weakens moment assumptions. In this paper we present several exponential and moment inequalities, particularly those related to laws of the iterated logarithm, for self-normalized random variables including martingales. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009